
CHAOTIC HOMOGENEOUS POROUS MEDIA.
1. STRUCTURE THEOREMS

A. P. Mozhaev UDC 536.24:544.77

Basic theorems of the structure of the chaotic homogeneous isotropic porous media that form the first
group of theorems of transport theory in disordered systems are presented in the work.

The theory of heat exchange in stochastic porous systems presupposes the development of prob-
ability-theoretic analysis of four principal interrelated trends: a structural theory, conservation laws, hydrody-
namics, and heat exchange [1]. The present work is devoted to the first part of the analysis, i.e., to the
elementary structural theory.

Definition. If, for any cross section of a chaotic porous medium, the probability distribution of poros-
ity (clearance) over the area is single and unimodal, this medium is called homogeneous and isotropic.

Theorem 1. For a homogeneous and isotropic chaotic porous medium, the mean porosity over any

cross section is equal to the volume porosity Π
__

S = Π
__

V = Π
__

. The proof follows from ergodicity (see Theorem

7) and the well-known analysis theorem V[a,b] = ∫ 
a

b

S (x)dx.

Chaotic Spherical Packings (Charges) dpart = const. Theorem 2. In chaotic spherical packings with
a large number of particles:

(1) the porosity is Π
__

S = Π
__

V = Π
__

;

(2) the specific wetted perimeter is P
__

 = 
3π(1 − Π)

2dpart

;

(3) the hydraulic diameter is dhyd = 
4F
__

P
__  = 

8

3π
 

Π
__

(1 − Π
__

)
 dpart.

Proof. If the mean volume porosity is Π
__

V, the mean volume concentration of particles is n
_

V = 6(1
− Π

__
V)/(πdpart

3 ). Then the number of particles completely or partially located in a plane layer of thickness
dpart can be characterized by the mean surface concentration n

_
S = n

_
Vdpart.

We bring the cross-sectional plane into coincidence with the plane XOY (Fig. 1) and consider the
distribution of the coordinates of the centers of spheres occurring in the plane layer −rpart ≤ z ≤ rpart,
−∞ < x < ∞, and −∞ < y < ∞. From the population of all the spheres completely or partially entering into the
layer, we perform a random sampling of spheres, the distance between which exceeds the correlation radius
Rcor (the short-range order). For the coordinate Z of the centers of the spheres of such samples, a uniform
distribution (isotropy in the large) holds true. But the entire population can be covered by the counting num-
ber of such samples. Therefore, the total probability density is f(z) = 1/dpart. From this, for the mean cross-
sectional area s

_
0, the specific cross section of particles on the plane s

_
S, the mean cross-sectional perimeter

P
__

0, the specific perimeter P
__

, the hydraulic diameter dhyd, and the equivalent diameter deq we obtain
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s
__

0 = 
πdpart

2

6
 ,   s

__

S = s
__

0n
__

S = 1 − Π
__

V ;   Π
__

S = 1 − s
__

S = 1 − (1 − Π
__

V) = Π
__

V ,

P
__

0 = 
π2dpart

4
 ,   P

__
 = P

__
0n

__

S = 
3π (1 − Π

__
)

2dpart

 ,   dhyd = 
4F
__

P
__  = 

4Π
__

P
__  = 

8

3π
 

Π
__

1 − Π
__ dpart ,

deq = 
2

3
 

Π
__

1 − Π
__ ;   

dhyd

deq

 = 
4

π
 C 1.27 .

Hereafter, the values of the porosity of certain ordered packings will be used (see Table 1) [2].
Theorem 3. (Yu. A. Buevich, (1968) [3]). In chaotic dense spherical packings with a large number

of particles, the volume distribution of the particles obeys the normal law

W (n) = [2πNVν (1 − ν)]−1 ⁄ 2 exp 



− 

(n − νNV)2

2NVν (1 − ν)




 .

Here W(n) is the probability density of occurrence of n particles in NV cells of volume V; N = (1
− Πmin)V ⁄ Vpart; ν is the fraction of cells occupied by the particles ν = (1 − Π

__
)/(1 − Πmin); N, n >> 1.

Fig. 1. Section of the chaotic packing by the plane.

TABLE 1. Basic Ordered Packings of Spheres

Type of packing Coordination number 1 – Π Π

Most dense packing 12
√2
6

 π = 0.7405 0.2595

Cubic packing 6
π
6

 = 0.5236 0.4764

Tetrahedral packing 4
√3 π
16

 = 0.3401 0.6599

Least dense packing (unsta-
ble equilibrium) 4

2√3 π

(√6  + 2)3
 = 0.1235 0.8765
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The proof is based on the scheme of random unrepeated sampling in a discrete lattice space with the
use of the De Moivre–Laplace limiting theorem.

Corollary 1. The volume porosity distribution obeys the normal law. Since Π = 1 − 
nVpart

V
, we have

W (Π) = 
1

σ1 √2π
 exp 




− 

(Π − Π
__

)2

2σ1
2




 ,   σ1

2 = 
(1 − Π

__
) (Π

__
 − Πmin) Vpart

(1 − Πmin) V
 .

Corollary 2. A spherical packing with a large number of particles is a volume containing more than
3000 elements. The hypergeometric distribution goes over asymptotically into a normal distribution with the
total number of particles [4, 5]

Npar t > 
90

ν (1 − ν)2 ;

therefore, for Π
__

 = 0.4 and Πmin = 0.26 we obtain Npart > 3000.
Theorem 4. Chaotic spherical packings are homogeneous and isotropic porous media.

Proof. Since ΠS = 1 − 
s
_

0n
S

, where s
_

0 = 
Πdpart

2

6
 and n is the random number of particles in the plane

layer V = Sdpart, we have

W (ΠS) = 
1

σ2 √2π
 exp 




− 

(ΠS − Π
__

)2

2σ2
2




 ,   σ2

2 = 
(1 − Π

__
) (Π

__
 − Πmin) s

__

0

(1 − Πmin) S
 .

Theorem 5. If Πmin ≤ Π ≤ Πmax, then

W (Π) = 
1

σ3 √2π
 exp 




− 

(Π − Π
__

)2

2σ3
2




 . (1)

Here

σ3
2 = 

(Πmax − Π
__

) (Π
__

 − Πmin)
(Πmax − Πmin)

 K ;   K = 











Vpart

V
  −  for  volume ,

s
_

0

S
  −  for  area .

The proof is similar to that of Theorems 3 and 4.
Mean Porosity of the Chaotic Spherical Charge. The experimental data of [6–9]: Π

__
 = 0.38–0.41 is

the spherical charge without additional mechanical actions; Π
__

 = 0.35–0.39 is the spherical charge with sub-
sequent vibration or shaking; Scott [7] investigated the filling of spherical vessels of different dimensions
with spheres: Π

__
 = 0.40 + 0.37/Npart

1 ⁄ 3 (without vibration) and Π
__

 = 0.36 + 0.33/Npart
1 ⁄ 3 (with simultaneous shak-

ing).
Physical assumptions: (1) Πmin = 0.26 corresponds to the most dense packing (hexagonal, face-cen-

tered cubic, and certain not lattice structures; coordination number 12); (2) granular media that occur in a
gravitational field and are subjected to mixing, vibration, and other additional mechanical actions cannot be
very loose, i.e., for example, unstable configurations in the charge with Πmax = 0.791 (coordination number
4) are excluded. It can be assumed that the least dense granular medium under these conditions is charac-
terized by the porosity of a regular cubic packing with coordination number 6 and Πmax = 0.476. Indeed, in
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the case of a regular cubic arrangement the mechanical actions cause the spherical particles to shift from the
initial positions and the density of the medium to increase. On the other hand, the legitimacy of the second
assumption made is confirmed by the results of investigations in the region of phase transitions. It is well
known that the stability limit of systems of irregularly arranged molecules is attained for a density corre-
sponding to that of a cubic packing.

Theorem 6. In an infinite chaotic spherical charge, produced as a result of mechanical action (mix-
ing, vibration, etc.) in a gravity field, the entropy maximum of the probability distribution of the porosity is
attained for Π

__
 = 0.37.

Proof. The entropy of the probability distribution for the random porosity is

 H = − ∫ 

−∞

+∞

 W (Π) ln W (Π) dΠ .

For a spherical charge we have

H = 
1
2

 ln 2πeσ3
2 .

Whence

Hmax = 
1
2

 ln 
πeK

2
 (Πmax − Πmin)   for   Π

__
 = 

Πmin + Πmax

2
 = 0.37 .

Corollary. In densely filling a limited volume, the mean porosity of the charge is Π
__

 = 0.37 +
k ⁄ N1 ⁄ 3, where k is the coefficient dependent on the shape of the filled vessel. The particles located near the
vessel walls are in a particular position compared to the particles in the volume and affect the packing den-
sity. The magnitude of their contribution is proportional to the ratio of the surface area R2 to the vessel vol-
ume R3, i.e., the porosity of the charge increases in inverse proportion to the dimension of the system R or
N1 ⁄ 3, since the system volume is in proportion to the total number of spheres. In experiments with spherical
vessels, the numerical coefficient is k = 0.33 with vibration and k = 0.37 without vibration.

When the mechanical action is absent, Πmax and Π
__

 increase insignificantly due to the existence of
less dense unstable configuration inclusions than cubic ones.

We note that a similar result leading to the entropy maximum for Π
__

 = (Πmin + Πmax)/2 also holds true
for a discrete binomial distribution, from which a limited normal distribution is obtained in Theorem 3.

Basic Theorem of the Structure of Homogeneous Isotropic Porous Media. Theorem 7. A chaotic
medium is homogeneous and isotropic if and only if at any cross section the probability distribution of po-
rosity over the area obeys the normal law

W (Π) = 
1

√2π σ
 exp 




− 

(Π − Π
__

)2

2σ2




 ,   σ2 = D [Π] = Π

__
 (1 − Π

__
) 





dD

dS





2

 . (2)

Here dD is the dispersion diameter, which is the basic linear characteristic of the porous homogeneous struc-
ture and dS is the diameter of the arbitrary circular region of the cross section S = πdS

2 ⁄ 4.
The sufficiency is obvious; it follows from the definition of a homogeneous isotropic porous medium.
To prove the necessity, we use a diagram of the Monte Carlo method (Fig. 2). Let N0 random uni-

formly distributed points be arbitrarily selected on the cross-sectional area S0. Part of the points N0,Π are

located in pores; the mean porosity Π
__

 is determined in an ordinary manner (Π
__

 = S0,Π
 ⁄ S0, where S0,Π is the
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area of the pores in the cross section). Then for the random quantity N0,Π
 ⁄ N0 the relation 

N0,Π

N0
 =

1

N0

 ∑ 

i=1

N0

ξi with a uniform distribution for ξ = 



1
Π
__

    
0
1 − Π

__


 holds true. The quantity N0,Π

 ⁄ N0 for N0 → ∞ is

asymptotically normal with mathematical expectation M 




N0,Π

N0




 = Π

__
 and dispersion D 





N0,Π

N




 = 

Π
__

(1 − Π
__

)
N0

.

Then, for example, according to the "rule of three-sigmas" we obtain

P 








N0,Π

N0

 − Π
__



 < 

3 √Π
__

 (1 − Π
__

)
√N0

 



 = 0.997 .

The last relation justifies the use of the Monte Carlo method for determining the mean porosity for N0 >> 1.
We select the region with area S in the cross section; S < S0; N is the total number of random points; NΠ is
the number of random points in the pores; Π = SΠ

 ⁄ S is the porosity of the region S. Then it is easy to show
that, first:

P 
















N

N0

 − 
S

S0




 < 

√3 



S
S0

 

1 − 

S
S0









√N0

 












 = 0.997

and, second, by means of the unrepeated-sampling model:

W (NΠ) = 
CN0,Π

NΠ  CN0−N0,Π

N−NΠ

CN0

N  .

For N ⁄ N0 << 1, N ⁄ N0,Π << 1, and N ⁄ (N0 − N0,Π) << 1, using the de Moivre–Laplace limiting theorem and
considering that NΠ

 ⁄ N = Π for NΠ and N >> 1, we have

W (Π) = [2πΠ
__

 (1 − Π
__

) ⁄ N]−1 ⁄ 2 exp 



− 

N (Π − Π
__

)2

2Π
__

 (1 − Π
__

)




 .

Fig. 2. Proof of the basic theorem.
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Here N ⁄ N0 = S ⁄ S0 or N0
 ⁄ S0 = N ⁄ S = 1/SD for any area S; similarly it is easy to show that N0

 ⁄ S0 = NΠ
 ⁄ SΠ

= 1/SD for the corresponding area of the pores SΠ; therefore, SD is independent of the area and porosity and
is the characteristic of the structure. For SD = πdD

2  ⁄ 4, we finally obtain the normal law (2). The theorem is
proved.

Corollary 1. For chaotic homogeneous isotropic porous media, the probability distribution of the po-
rosity over the volume obeys the normal law. The proof is similar.

Corollary 2. Of all the continuous distributions the normal distribution has the greatest entropy for
the given dispersion. This well-known result of variational calculus is the thermodynamic substantiation and
confirmation of the prevalence of homogeneous isotropic porous systems in nature and of the normal law of
porosity distribution in these systems.

Corollary 3. The dispersion diameter for a spherical charge is determined by the formula

dD = 
σdS

√Π
__

 (1 − Π
__

)
 = 





2 (Πmax − Π
__

) (Π
__

 − Πmin)

3 (Πmax − Πmin) (1 − Π
__

) Π
__





1 ⁄ 2

 dpar t , (3)

which follows from relations (1) and (2). For Π
__

 = 0.37, Πmin = 0.26, and Πmax = 0.476 we obtain dhyd =
0.499dpart C 0.5dpart, deq = 0.392dpart C 0.39dpart, and dD = 0.394dpart C 0.39dpart. In this case, the equivalent
diameter is almost equal to the dispersion diameter, deq C dD, which is an important factor in using the ex-
perimental data where deq is the determining dimension.

Corollary 4. The mean value of the porosity over the ensemble sΠt is equal to that of the porosity
over the area (volume) Π

__
, since sΠt = M[Π] = Π

__
. The ergodic property of the mean values of the porosity

is proved.
Chaotic deviations of the true porosity of a body from the mean porosity cause the appearance of

local dispersion flows. The characteristic scales of this stationary turbulence coincide with the scales of inho-
mogeneity of a porous body and determine mainly the processes of heat and mass exchange in it, which has
been shown by theoretical and experimental investigations [10–16].

NOTATION

Π, porosity; V, volume; S, area; SD, dispersion area; dpart and rpart, diameter and radius of the parti-
cles; dhyd, deq, and dD, hydraulic, equivalent, and dispersion diameters; P, perimeter; F, flow area; nV and
nS, concentration of particles by volume and area; Rcor, correlation radius; s0, cross-sectional area of a parti-
cle; s

_
S, specific cross section of the particles; P0, perimeter of the particle cross section; W, probability den-

sity; n, number of particles in the volume V; NV, number of cells of the volume V; Npart, total number of
particles; ν, fraction of the cells occupied by the particles; σ, σ1, σ2, and σ3, standard deviations; R, linear
dimension of the spherical packing; D, dispersion; N0, N0,Π, N, and NΠ, number of random points on the
area S0, S0,Π, S, and SΠ; ξ, uniformly distributed random quantity; M, mathematical expectation. Subscripts:
V, relating to the volume; S, relating to the area; max and min, maximum and minimum values.
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